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In a seminal paper, Lasota and Opial (Colloq. Math., 1967) proved
that for second order ordinary differential equations, global
existence and uniqueness of solutions of initial value problems and
uniqueness of solutions of two point conjugate (Dirichlet)
boundary value problems implies existence of solutions of two point
conjugate boundary value problems.

Following this work many related results were obtained and
principal contributors include Jackson and his students, Hartman,
and Henderson. Henderson and Eloe recently gathered these
results in the monograph Nonlinear Interpolation and Boundary
Value Problems (EH, 2016).



In the context of the second order ordinary differential equation, if
the nonlinear term is monotone increasing with respect to position,
the solutions of two point conjugate boundary value problems are
unique if they exist.

If the difference, u, of distinct solutions has an absolute extreme
point at c in the interior of the interval, then the sign of u′′(c)
given by the second derivative test is opposite the sign of u′′(c)
given by the monotonicity.



Let n ≥ 2 denote an integer and let a < T1 < T2 < b. Let ai ∈ R,
i = 1, . . . , n. We shall consider the ordinary differential equation

y (n)(t) = f (t, y(t), . . . , y (n−1)(t)), t ∈ [T1,T2], (1)

where f : (a, b)× Rn → R, or the ordinary differential equation

y (n)(t) = f (t, y(t)), t ∈ [T1,T2], (2)

where f : (a, b)× R→ R. We shall prove existence of solutions of
two-point boundary value problems for either (1) or (2) with the
boundary conditions

y (i−1)(T1) = ai , i = 1, . . . , n − 1, y(T2) = an, (3)

under the assumption of uniqueness of solutions of boundary value
problems for either (1) or (2) with the boundary conditions, for
j ∈ {1, 2},

y (i−1)(T1) = ai , i = 1, . . . , n − 1, y (j−1)(T2) = an. (4)



There are two contributions of this work.

The first is to obtain that the uniqueness of solutions of the
boundary value problems (1), (4) implies the existence of solutions
of the boundary value problems (1), (3).

The second is to obtain a verifiable hypothesis with respect to
monotonicity of f such that solutions of (2), (4) are unique if they
exist.

We will begin with the second contribution.



Theorem (monotone increasing implies uniqueness of
solutions)

Assume that f : (a, b)× R→ R is continuous and assume there
exists a positive constant, P, such that

|f (t, y)− f (t, z)| ≤ P|y − z |

for all (t, y), (t, z) ∈ (a, b)× R. Assume in addition that ∂f
∂y = fy

exists and
∂f

∂y
= fy : (a, b)× R→ (0,∞).

Then solutions of the boundary value problem (2), (4) are unique
if they exist.



Let j ∈ {1, 2}. Assume that y1 and y2 are distinct solutions of the
boundary value problem (2), (4). We first argue that there exists
T3 ∈ (T1,T2) such that (y1 − y2)(T3) = 0. So, for the sake of
contradiction, assume y1 − y2 is of constant sign on (T1,T2) and
without loss of generality assume (y1 − y2)(t) > 0 for
T1 < t < T2. Set u(t) = (y1 − y2)(t). Then

u(n)(t) = f (t, y1(t))− f (t, y2(t)) > 0, T1 < t < T2,

which implies u(n−1)(t) is increasing on (T1,T2). Since
u(i−1)(T1) = u(j−1)(T2) = 0, i = 1, . . . , n − 1, repeated
applications of Rolle’s theorem implies u(n−1)(t) has a root in
(T1,T2).



With u(n−1)(t) is increasing on (T1,T2) and u(n−1)(t) has a root
in (T1,T2) conclude that u(n−1)(t) has precisely one root in
(T1,T2) and thus, u(n−1)(T1) < 0.

So u satisfies

u(i−1)(T1) = 0, i = 1, . . . , n − 1, u(n−1)(T1) < 0,

and Taylor’s theorem implies that u(t) < 0 in a right neighborhood
of t = T1. This contradicts that (y1 − y2)(t) > 0 for T1 < t < T2.
Thus, there exists T3 ∈ (T1,T2) such that (y1 − y2)(T3) = 0.



Let
S = {t ∈ (T1,T2) : (y1 − y2)(t) = 0}.

We have just shown S 6= ∅. Let τ = inf S . If τ > T1, argue that
(y1− y2)(τ) = 0. This follows by continuity if τ is a limit point of S
and by definition if τ is an isolated point of S . Thus if τ > T1, y1
and y2 are distinct solutions of a boundary value problem (2), (4)
for T2 = τ . Now apply the argument in the preceding paragraph
and show there exists T3 ∈ (T1, τ) such that (y1 − y2)(T3) = 0; in
particular, the assumption that τ = inf S > T1 is false.
So, inf S = T1. Find T ∈ S such that 0 < T −T1 < δ = 1

2P . Then
an application of the contraction mapping principle, not developed
in this presentation, implies y1 ≡ y2 on [T1,T ]. Now Condition (B)
implies y1 ≡ y2 on (a, b).



We now return to the first contribution.

y (n)(t) = f (t, y(t), . . . , y (n−1)(t)), t ∈ [T1,T2],

for j ∈ {1, 2},

y (i−1)(T1) = ai , i = 1, . . . , n − 1, y (j−1)(T2) = an.

We also have need to state the n−point conjugate boundary
conditions

y(ti ) = ai , i = 1, . . . , n, (5)

where a < t1 < t2 < · · · < tn < b, and ai ∈ R, i ∈ {1, . . . , n}.



With respect to (1) common assumptions for the types of results
that we consider are:

(A) f (t, y1, . . . , yn) : (a, b)× Rn → R is continuous;

(B) Solutions of initial value problems for (1) are unique and
extend to (a, b);

(C) There exists at most one solution of each n−point conjugate
boundary value problem (1), (5) on (a, b).

With respect to (2) the assumptions (A) and (B) are replaced,
respectively, by

(A′) f (t, y) : (a, b)× R→ R is continuous;

(B ′) Solutions of initial value problems for (2) are unique and
extend to (a, b).



We shall replace Condition (C), (that is, n−point disconjugacy),
with a Condition (D), stated here.

(D) Solutions of the two-point boundary value problems (1), (4)
are unique if they exist.

We shall then modify the sequential compactness argument of
Lasalle and Opial to obtain existence of solutions of each member
of the family of two-point boundary value problems (1), (3).



A generalized mean value theorem
Set h > 0 and choose t0 = T , t1 = T + h, . . . , ti = T + ih to be
equally spaced. If a function z is i times continuously differentiable
on [T ,T + ih] then there exists c ∈ (T ,T + ih) such that∑i

l=0(−1)i−l
(i
l

)
z(T + ih)

hi
= z(i)(c). (6)

For example, if i = 1, (6) is the mean value theorem and if i = 2,
there exists c ∈ (T ,T + 2h) such that

z(T )− 2z(T + h) + z(T + 2h)

h2
= z ′′(c).



Continuous dependence on initial conditions:

Lemma
Assume that with respect to (1), Conditions (A) and (B) are
satisfied. Then, given a solution y of (1), given t0 ∈ (a, b), given
any compact interval [c , d ] ⊂ (a, b), and given ε > 0, there exists
δ > 0 such that if z is a solution of (1) satisfying
|y (i−1)(t0)− z(i−1)(t0)| < δ, i = 1, . . . , n, then
|y (i−1)(t)− z(i−1)(t)| < ε, i = 1, . . . , n, for all t ∈ [c, d ].



Continuous dependence on boundary conditions:

Theorem
Assume that with respect to (1) Conditions (A), (B), and (D) are
satisfied. Let j ∈ {1, 2}.

(i) Given any a < T1 < T2 < b, and any solution y of (1), there
exists ε > 0 such that if |T11−T1| < ε, |y (i−1)(T1)− yi1| < ε,
i = 1, . . . , n − 1, and |T21 − T2| < ε, |y (j−1)(T2)− yn1| < ε,
then there exists a solution z of (1) such that
z(i−1)(T11) = yl1, i = 1, . . . , n − 1, z(j−1)(T21) = yn1.

(ii) If T1k → T1, T2k → T2, yik → yi , i = 1, . . . , n and zk is a

sequence of solutions of (1) satisfying z
(i−1)
k (T1k) = yik ,

i = 1, . . . , n − 1, z
(j−1)
k (T2k) = ynk , then for each

i ∈ {1, . . . , n}, z(i−1)k converges uniformly to y (i−1) on
compact subintervals of (a, b).



Theorem
Assume that with respect to (1), Conditions (A), (B), and (D) are
satisfied. Then for each a < T1 < T2 < b, ai ∈ R, i = 1, . . . , n,
the two point boundary value problem (1), (3) has a solution.

PROOF: This is a shooting method. Let m ∈ R and denote by
y(t;m) the solution of the initial value problem (1), with initial
conditions

y (i−1)(T1;m) = ai , i = 1, . . . , n − 1, y (n−1)(T1;m) = m.

Let

Ω = {p ∈ R : there exists m ∈ R with y(T2;m) = p}.

So the theorem is proved by showing Ω = R. By Condition (B),
Ω 6= ∅, so the theorem is proved by showing Ω is open and closed.
That Ω is open follows from continuous dependence on boundary
conditions.



To show Ω is closed, let p0 denote a limit point of Ω and without
loss of generality let pk denote a strictly increasing sequence of
reals in Ω converging to p0. Assume y(T2;mk) = pk for each
k ∈ N1. It follows by the uniqueness of solutions, Condition (D),
that

y (j−1)(t;mk1) 6= y (j−1)(t;mk2), t ∈ (T1, b), (7)

for each j ∈ {1, 2}, if k1 < k2 and in particular,

y(t;m1) < y(t;mk) t ∈ (T1, b), (8)

for each k .



Either y ′(T2;mk) ≤ 0 infinitely often or y ′(T2;mk) ≥ 0 infinitely
often. Relabel if necessary and assume y ′(T2;mk) ≤ 0 or
y ′(T2;mk) ≥ 0 for each k. Finally note that (7) implies that we
may assume y ′(T2;mk) < 0 or y ′(T2;mk) > 0 for each k .
We first assume the case y ′(T2;mk) < 0 for each k . Find
T2 < T3 < b such that y ′(t;m1) ≤ 0, for t ∈ [T2,T3]. Then
y(t;m1) is decreasing on [T2,T3]. By (8), if t ∈ [T2,T3] and
k ≥ 1, then

L = y(T3;m1) ≤ y(t;m1) ≤ y(t;mk). (9)



Fix k and find T2 < T3k ≤ T3 such that y ′(t;mk) < 0 on
[T2,T3k ]. Then y(t;mk) is decreasing on [T2,T3k ]; in particular

L ≤ y(T3k ;m1) < y(T3k ;mk) ≤ y(t;mk) ≤ y(T2;mk) ≤ p0 (10)

for t ∈ [T2,T3k ].
The observation employed by Lasota and Opial is

0 >
y(T3k ;mk)− y(T2;mk)

T3k − T2
≥ L− p0

T3k − T2
≥ L− p0

T3 − T2
= K1. (11)

Apply the mean value theorem (or (6) in the case i = 1) to the left
hand side of (11), to see that

Sk1 = {t ∈ [T2,T3k ] : K1 − 1 ≤ y ′(t;mk) < 0} 6= ∅;

by the continuity of y ′(t;mk), there exists a closed interval of
positive length,

I1 = [T2k1,T3k1] ⊂ Sk1 ⊂ [T2,T3k ].



To outline an induction argument in i , the order of the derivative
y (i−1), set h = T3k1−T2k1

2 and consider

y(T2k1;mk)− 2y(T2k1 + h;mk) + y(T2k1 + 2h;mk)

h2
.

Then, continuing to observe that y(t,mk) is decreasing on I1,

y(T21;mk)− 2y(T21 + h) + y(T1 + 2h)

h2
≥ 2(L− p0)

h2

=
23(L− p0)

(T3k1 − T2k1)2
≥ 23(L− p0)

(T3 − T2)2
= K2

and

y(T21;mk)− 2y(T21 + h) + y(T1 + 2h)

h2
≤ 2(p0 − L)

h2
≤ −K2.



In particular,∣∣∣y(T21;mk)− 2y(T21 + h) + z(T1 + 2h)

h2

∣∣∣ ≤ −K2.

Apply (6) in the case i = 2 and the set

Sk2 = {t ∈ [T2k1,T3k1] : |y ′′(t;mk)| ≤ −K2 + 1} 6= ∅

and contains a closed interval of positive length

I2 = [T2k2,T3k2] ⊂ Sk2 ⊂ [T2k1,T3k1] ⊂ [T2,T3].



The induction hypothesis is then, for i ∈ {2, . . . n − 2} assume
there exist T2ki < T3ki such that
Ii = [T2ki ,T3ki ] ⊂ [T2k(i−1),T3k(i−1)] ⊂ [T2,T3] and

|y (i)(t;mk)| ≤ −Ki + 1, t ∈ Ii

where

Ki =
i i2i−1(L− p0)

(T3 − T2)i
.

Set h = T3ki−T2ki
i+1 . Then,

∣∣∣∑i+1
l=0(−1)i+1−l(i+1

l

)
y(T2ki + lh)

hi+1

∣∣∣ ≥ (i + 1)i+12i (L− p0)

(T3ki − T2ki )i+1

≥ (i + 1)i+12i (L− p0)

(T3 − T2)i+1
= −Ki+1.



Apply (6) in the case i + 1 and the set,

Sk(i+1) = {t ∈ [T2ki ,T3ki ] : |y (i+1)(t;mk)| ≤ −Ki+1 + 1} 6= ∅

and contains a closed interval of positive length

Ii+1 = [T2(i+1),T3(i+1)] ⊂ [T2i ,T3i ] ⊂ [T2,T3].



Recall that k is fixed. For this fixed k, choose tk ∈ In−1. Then

(tk , y(tk ;mk),y ′(tk ;mk), . . . , y (n−1)(tk ;mk))

∈ [T2,T3]× [L, p0]× Πn−1
i=1 [−Ki − 1,Ki + 1].

The set on the righthand side is a compact subset of Rn+1 and
independent of k . Perform this process for each k and generate a
sequence

{(tk , y(tk ;mk),y ′(tk ;mk), . . . , y (n−1)(tk ;mk))}∞k=1

⊂ [T2,T3]× [L, p0]× Πn−1
i=1 [−Ki − 1,Ki + 1].



In particular, there exists a convergent subsequence (relabeling if
necessary)

{(tk , y(tk ;mk), y ′(tk ;mk), . . . , y (n−1)(tk ;mk))} → (t0, c1, . . . , cn)

where t0 ∈ [T2,T3]. Since t0 ∈ (a, b) and by the continuous
dependence of solutions of initial value problems, y(t;mk)
converges in Cn−1[T1,T3] to a solution, say z(t), of the initial
value problem (1), with initial conditions, y (i−1)(t0) = ci ,
i = 1, . . . , n. Thus, p0 = z(T2) which implies p0 ∈ Ω and Ω is
closed. This completes the proof if y ′(T2;mk) < 0 for each k.



If y ′(T2;mk) > 0 for each k, find T1 < T3 < T2 such that
y ′(t;m1) ≥ 0, for t ∈ [T3,T2]. Then

L = y(T3;m1) < y(T3;mk) ≤ y(t;mk) ≤ p0, T3 ≤ t ≤ T2,

and the above argument can be modified to apply on [T3,T2].
This completes the proof.



Corollary

Assume that f : (a, b)× R→ R is continuous and assume there
exists a positive constant, P, such that

|f (t, y)− f (t, z)| ≤ P|y − z |

for all (t, y), (t, z) ∈ (a, b)× R. Assume in addition, that
∂f
∂y = fy : (a, b)× R→ (0,∞). Then for each a < T1 < T2 < b,
ai ∈ R, i = 1, . . . , n, the two point boundary value problem (2),
(3) has a solution.


